
Equation of state of a Lennard-Jones polymer

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1977 J. Phys. A: Math. Gen. 10 59

(http://iopscience.iop.org/0305-4470/10/1/015)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 13:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/10/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 10, No. 1, 1977. Printed in Great Britain. @ 1977 

Equation of state of a Lennard-Jones polymer? 
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Abstract. The equation of state of a single polymer with modified Lennard-Jones inter- 
segmental interaction is considered. From approximate numerical solutions for the radial 
distribution function g ( r ) ,  it is possible to study the collapse transition observed experimen- 
tally. 

In a series of papers we have presented the statistical mechanical theory of a single ring 
polymer, where we have derived the thermodynamic functions of this system in terms of 
the radial distribution function g ( r )  (Naghizadeh 1968, Naghizadeh and Ailawadi 
1975a, b). 

The formalism, discussed in detail in earlier papers, consists of setting up the 
configurational partition function of a single polymer and defining appropriate many- 
particle distribution functions (Naghizadeh 1968). After defining the state variables- 
volume and tension (analogue of pressure)-appropriate to the system, one is able to 
derive the equation of state in terms of the binary intersegmental potential and g ( r )  
(Naghizadeh and Ailawadi 1975a). A further consequence of the theory was the 
development of a Born-Green-Kirkwood-type hierarchy of equations (Naghizadeh 
1968). Detailed numerical computations for g ( r )  and other thermodynamic potentials 
were given for a polymer with hard-sphere intersegmental interactions (Naghizadeh 
and Ailawadi 1975b), where the superposition approximation was used for the compu- 
tation of g ( r ) .  

In this paper we discuss the preliminary results for the equation of state of a polymer 
interacting with a modified Lennard-Jones potential. Attention will be focused on the 
collapse of the polymer which has been the subject of some recent studies (de Gennes 
1975, Mazur and McIntyre 1975, Mazur and McCrackin 1968, McCrackin eta1 1973). 

The volume of a single polymer of N segments is defined by 

V = R = (( R 2)o)3'2a 

(R 2)o  = Nb 2 /  12, 
wh 

R = (R2);"a 

where ( R 2 )  is the mean square radius of gyration of the polymer consisting of N 
segments with a mean bond length b and (R2) ,  is that for a similar polymer but subject 
to no internal or external forces (non-interacting polymer). a2 = (R2) ) / (R2) ,  is the 
expansion coefficient used by Flory (1953) and also by de Gennes (1975). Now it is 
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physically possible to alter a in two independent ways. First the change of temperature 
in a fixed solvent will result in a change of a. Second, at a fixed temperature, one will 
have different values of a for two different solvents. In good solvents, the solvent 
molecules generally interpose themselves inside the polymer causing an expansion of 
the system or an increase in a. The solvent thus acts to exert a uniform tension on the 
polymer system which may be considered to be the physical analogue of the pressure in 
simple fluids. This tension is now denoted by 7 and is given as the derivative of the free 
energy, F, with respect to volume V. 

An equation of state of the polymer derived by us previously (Naghizadeh and 
Ailawadi 1975a), gives the relationship between the three variables a, temperature T, 
and tension 7: 

Here g(r;  a )  is the radial distribution function, p f ) ( r ;  a )  the non-interacting pair 
distribution, u ( r )  the intersegmental pair potential, and /3 = l/kT. We now choose for 
u ( r )  the modified Lennard-Jones potential given by 

( r )  = u o k )  + U1 ( r )  (4) 

( 0  r < a  

where a is the hard-sphere diameter. 
A numerical procedure analogous to the work of Kirkwood et af (1952) on simple 

fluids was used to solve for g ( r ) .  In this scheme, the g ( r )  for the polymer with modified 
Lennard-Jones interaction is obtained by a perturbation expansion about hard-sphere 
radial distribution function in powers of P E  

(7) 
where go(r; a )  and t+hl(r; a )  are the hard-sphere radial distribution function and the first 
term in the perturbation expansion and are given by (x = r /a  and a /b  = 1) 

d r ;  a )  = go(r; a)(l +P&(r; a ) + .  * .) 

(8) 
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A is related to a through the thermodynamic identity between chemical potential and 
tension T and its precise form has been given earlier (Naghizadeh and Ailawadi 1975b). 

The set of equations (8)-(11) is solved numerically for the pearl-necklace model 
with N = 6000, for different values of the parameter A corresponding to different 
densities. Figure 1 shows typical g(x) for one density and two different temperatures. 
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Figure 1. g ( x )  as a function of x for a density corresponding to CY = 1.29 with A = 3.6 for two 
different reduced temperatures: A, pc = 1.2; B, P E  = 0.4. 

The data obtained in this way are used to calculate the equation of state (equation 
(3)) and study the collapse of a large polymer in solution. Experimentally, the collapse 
or gel transition of polymer in a poor solvent has been known for a long time and has 
been used in polymer fractionation. In traditional polymer chemistry the collapse of the 
polymer is brought about by a change of solvent, usually by mixing a good solvent and a 
poor one in various proportions. Recently, the light scattering data of a high molecular 
weight polystyrene (MW = 4.4 X 10’) solution in cyclohexane has been analysed by 
Mazur and McIntyre (1975). 

When the mean square radius of gyration (R’)  for this system is plotted against 
inverse temperature, it is found that (R2) rapidly drops by a factor 3 in the neighbour- 
hood of the @ temperature. Mazur and McCrackin (1968) and McCrackin et a1 (1973) 
have also studied the temperature dependence of the mean square radius of gyration of 
a polymer on a lattice with Monte Carlo techniques. Their model polymer was a 
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self-avoiding polymer on a lattice with a square well attraction for neighbouring 
segments, not directly bonded together. This model also shows a rapid drop of (R 2> in a 
critical temperature region. 

In the present formalism, it is convenient to rewrite the equation of state (equation 
(3)) in terms of linear tension TL defined by 

The linear tension defined above must be distinguished from the earlier definition of 
tension which was the derivative of the free energy F with respect to V defined in 
equation (1). 

In equation (12) R is equal to (R2)1'2. The present definition of T L  becomes 
necessary when comparison with existing polymer literature is to be attempted. The 
linear tension T~ has a simple relationship with T defined earlier, namely 

-= R7L 7v. 
3 

Further, the reduced linear tension T? is defined as 

Combining equations ( 3 ) ,  (6), (13) and (14), the reduced equation of state takes the 
dimensionless form 

We may now interpret the various terms on the right-hand side of equation (15). The 
first term 3/@a corresponds to the usual gas term. In the absence of chain connectivity 
and repulsive and attractive potential terms, this would be the only term which would 
survive. The second term is due to chain connectivity (or chain elasticity). This is the 
extra tension exerted on the chain molecules due to their connectivity. The third term is 
the contribution of repulsive and the fourth that of attractive portions of intersegmental 
interactions. 

We now use equation (15) to plot the T? against a curves corresponding to the 
isotherms of the usual P-V diagrams in simple fluids. Note, however, that the 
transition is brought about by a competition between repulsive and attractive potential 
terms and the net tension exerted on the particles. We may now consider the system as 
being composed of free particles upon which two types of confining forces are 
operating. The first confining force is that due to T ;  which simulates the solvent action 
and the second is 3a/& which is the confining force due to chain connectivity. The net 
force tending to confine the particles is the sum of these two. In figure 2 the net tension 
[T: + (3u/Pe) ]  is plotted against the reduced linear extension a for various values of the 
inverse reduced temperature Be. One notes that the usual van der Waals loops are 
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Figure 2. Reduced net tension defined as 

against a. Note that 3 a / P c  is the chain contribution to r:. 

obtained as expected. The two-phase behaviour sets in at values of reduced inverse 
temperature P E  > 1.2. Thus a critical temperature and critical tension exist in this 
system as in the analogous simple fluid case. 

Recently, de Gennes (1975) has presented a simple theory for a collapse transition 
in polymers using a modified Flory expression for the free energy. Minimization of this 
free energy with respect to CY leads to 

X 

f f f f  CY 
CY +a. Y 1  

7 

A plot of a against x for different values of y produces transition behaviour similar 
to magnetic transitions at the tricritical point. To compare our theory with de Gennes’, 
we note that in the equation of state (15) the sum of the two terms due to the repulsive 
and attractive parts of the potential corresponds to the x term of equation (16). These 
terms involve a factor l/a3. An examination of data for g(x) shows that g is inversely 
related to the expansion coefficient CY. Bearing this in mind, the two equations (15) and 
(16) have similar structures in the parameter a. The precise CY and N dependence of 7: 

and g are not clear, and therefore a better comparison cannot be made at this time. The 
parameter y in de Gennes’ work arises from the third virial term added to the Flory free 
energy expression. This term may possibly be related to the reduced tension 7; in our 
theory. 

De Gennes’ theory, however, needs to be re-examined in the light of a recent work 
by des Cloizeaux (1976) which shows that the Flory term is absent in the free energy 
expression for a polymer. 
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